Uncalibrated Vision-Based Control and Motion Planning of Robotic Arms in Unstructured Environments
نویسنده
چکیده
Many robotic systems are required to operate in unstructured environments. This imposes significant challenges on algorithm design. Particularly, motion control and planning algorithms should be robust to noise and outliers, because uncertainties are inevitable. In addition, independence from scene model and calibration parameters is preferred; otherwise, the tedious model extraction and calibration procedures need to be redone with every change in the environment. The basic problem that this thesis addresses is how to robustly control the motion of a vision-based manipulator and plan occlusion-free paths in unstructured environments. Vision-based motion control without using calibration or a geometric model is studied in Uncalibrated Visual Servoing (UVS). In this thesis, we adopt a framework based on UVS and contribute to two distinct areas: robust visual servoing and robust randomized path planning. We develop a statistically robust algorithm for UVS, which detects outliers and finds robust estimates of the uncalibrated visual-motor Jacobian, a central matrix in the visual servoing control law. We integrate the robust Jacobian estimation into a real-time feedback control loop and present case studies. To avoid the visual and joint-limit constraints, we propose a robust sampling-based path planning algorithm. The proposed planner fits well within the UVS framework and facilitates occlusion-free paths, despite not knowing the obstacle model. Finally, our third and last contribution is a novel UVS approach based on extracting the geometry of three images in the form of the trifocal tensor. We experimentally validate this approach and show that the proposed UVS controller handles some of the most challenging degenerate configurations of image-based visual servoing.
منابع مشابه
Robust Sampling-Based Planning for Vision-Based Control in Unstructured Environments
We propose a robust planning algorithm to reject visual-motor outliers and address uncalibrated visual servoing in unstructured settings. The proposed framework is built on the success and efficiency of the sampling-based planners while incorporating robustness to outliers in both planning and control.
متن کاملEye-in-hand robotic tasks in uncalibrated environments
Flexible operation of a robotic agent in an uncalibrated environment requires the ability to recover unknown or partially known parameters of the workspace through sensing. Of the sensors available to a robotic agent, visual sensors provide information that is richer and more complete than other sensors. In this paper we present robust techniques for the derivation of depth from feature points ...
متن کاملPlanning Arm with 5 Degrees of Freedom for Moving Objects Based on Geometric Coordinates and Color
Skilled mechanical arms of consanguine relationship formed by joints the relative motion of the adjacent interfaces enable, have been connected. Ability to perform a variety of pre-programmed robotic manipulator in various industries. Skilled mechanical arms in recent years as a significant progress has been completed. House repair and easier to work with them as well and fit and optimal relati...
متن کاملVisually guided grasping in unstructured environments
We present simple and robust algorithms which use uncalibrated stereo vision to enable a robot manipulator to locate, reach and grasp unmodelled objects in unstructured environments. In the rst stage, an operator indicates the object to be grasped by simply pointing at it. Next, the vision system segments the indicated object from the background, and plans a suitable grasp strategy. Finally, th...
متن کاملSaliency Detection and Model-based Tracking: a Two Part Vision System for Small Robot Navigation in Forested Environments
Towards the goal of fast, vision-based autonomous flight, localization, and map building to support local planning and control in unstructured outdoor environments, we present a method for incrementally building a map of salient tree trunks while simultaneously estimating the trajectory of a quadrotor flying through a forest. We make significant progress in a class of visual perception methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012